The effect of intake level of rumen undegradable protein during the extended growing stage on ruminal fermentation and fatty acids composition of intramuscular fat at 17 months of age Woo Hyeong Hong¹, Bharanidharan Rajaraman², Tae Hoon Kim¹, Keum Hwi Bang³, Ridha Ibidhi³, Panyavong Xaysana¹, Jun Suk Byun¹, Kyoung Hoon Kim^{1,3} ¹Graduate School of International Agriculture Technology, SNU; ²Department of Agricultural Biotechnology, SNU; ³Institute of Green Bio Science & Technology, SNU

(E-mail: khhkim@snu.ac.kr)

International Agricultural

Seoul National University

Background

Recently, commercial beef farms in Korea have been supplying concentrate feeds high in CP content compared to the conventional feeds to shorten the feeding period. This study investigated that the effects of different CP and rumen undegradable protein (RUP) intakes during the extended growing stage up to 17 months of age on the growth performance and blood as well as fatty acid profiles in intramuscular fat of biopsy sample at 17 months of age.

Materials and Methods

Forty-eight Hanwoo steers with an average 8 months of age and 217 ± 18.17 kg body weight were assigned in balance; 16 steers per treatment (4 steers per pen;4 pens per treatment).

Measuring Body weight once a month

Feed refusal was measured once 10 days

17 months of age

26 months of age

T1 T2 T3

Slaughter 15 months of age : Rumen sampling 2 hour after feeding Fatty acid and : Blood sampling from jugular vein 3 hour after feeding Gene will be 17 months of age analyzed : Biopsy of 2 animals randomly per pen For fatty acid and Gene

Figure. 1 Intake of feed, rumen degradable protein (RDP) and rumen undegradable protein (RUP).

All data were analyzed using MIXED procedure of SAS (SAS institute, Cary, NC, USA). Treatments significance was considered at P < 0.05 and trends were considered $0.05 \le P < 0.10$.

Results

Months of age

Figure. 2 The Effect of CP and RUP intake on ADG and BW.

Figure. 3 The Effect of CP and RUP intake on blood metabolites.

	Treatment				P-value		
Fatty acid	Treatment 1	Treatment 2	Treatment 3	SEM	T1 x T2	T1 x T3	T2 x T3
Myristic acid, C14:0	172	206	272	47.1	0.4809	0.0469	0.178
Myristoleic acid, C14:1	46	50	70	12.8	0.7397	0.0778	0.1441
Pentadecenoic acid, C15:1	6	10	9	1.4	0.0199	0.0594	0.6042
Palmitic acid, C16:0	1463	1582	1965	309.2	0.7046	0.1194	0.2290
Palmitoleic acid, C16:1	264	268	338	57.5	0.9405	0.2098	0.2366
Stearic acid, C18:0	598	629	774	131.4	0.8150	0.1955	0.2837
Elaidic acid, C18:1n9t	86	86	121	23.1	0.9879	0.1428	0.1466
Oleic acid, C18:1n9c	2257	2253	2762	459.0	0.9929	0.2830	0.2792
Linoleic acid(LA), C18:2n6c	164	174	197	15.9	0.5507	0.0501	0.1559
Dihomogamma-linolenic acid, C20:3n6	13	16	15	1.3	0.0243	0.0482	0.7457
The others fatty acid (n=16)	189	188	223	-	-	-	-
SFA	2357	2545	3159	498.6	0.7099	0.1226	0.2316
MUFA	2699	2705	3350	550.5	0.9916	0.2506	0.2548
PUFA	203	212	238	20.5	0.6559	0.1035	0.225
MUFA:SFA	1.13	1.06	1.07	0.1	0.2709	0.3624	0.8438
PUFA:SFA	0.10	0.09	0.08	0.0	0.5595	0.2893	0.6263
Omega6:3	17	21	22	1.7	0.0325	0.0037	0.3399
Total fatty acids (mg/100g Tissue)	5258.94	5462.03	6746.47	1059.2	0.8498	0.1748	0.2387

- Lower rumen ammonia (NH $_3$ -N) concentration (P < 0.1) in T2 compared to T1 implies the increase in protein supply or degradability in small intestine.
- The significant differences (P < 0.01) in acetate/propionate ratio may be responsible for the higher ADG in T3 than T1.
- Non significant effect on blood metabolism suggests that there was no metabolic disorder associated with increases in intakes of RUP and CP.
- Final results obtained after slaughtering the steers at 26 months of age (July 2021) should provide a more clear explanation of the factors influencing growth

Conclusion

performance, quality grade, fatty acid composition of intramuscular and gene expression involved in lipogenesis of steers fed different intakes of CP and RUP to shorten the feeding period.

